Density aware anomaly detection in crowded scenes

نویسندگان

  • Ayse Elvan Gunduz
  • Cihan Ongun
  • Tugba Taskaya-Temizel
  • Alptekin Temizel
چکیده

Coherent nature of crowd movement allows representing the crowd motion using sparse features. However, surveillance videos recorded at different periods of time are likely to have different crowd densities and motion characteristics. These varying scene properties necessitate use of different models for an effective representation of behaviour at different periods. In this study, a density aware approach is proposed to detect motion-based anomalies for scenes having varying crowd densities. In the training, the sparse features are modelled using separate hidden Markov models, each of which becomes an expert for specific scene characteristics. These models are then used for anomaly detection. The proposed method automatically adapts to the changing scene dynamics by switching to the most representative model at each frame. The authors demonstrate the effectiveness and real-time performance of the proposed method on real-life datasets as well as on simulated crowd videos that they generated and made publicly available to download.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Contextual anomaly detection in crowded surveillance scenes

This work addresses the problem of detecting human behavioural anomalies in crowded surveillance environments. We focus in particular on the problem of detecting subtle anomalies in a behaviourally heterogeneous surveillance scene. To reach this goal we implement a novel unsupervised context-aware process. We propose and evaluate a method of utilising social context and scene context to improve...

متن کامل

Fully Convolutional Neural Network for Fast Anomaly Detection in Crowded Scenes

We present an efficient method for detecting and localizing anomalies in videos showing crowded scenes. Research on fully convolutional neural networks (FCNs) has shown the potentials of this technology for object detection and localization, especially in images. We investigate how to involve temporal data, and how to transform a supervised FCN into an unsupervised one such that the resulting F...

متن کامل

Detecting Abnormal Behaviors in Crowded Scenes

Situational awareness is a basic function of the human visual system, which is attracting a lot of research attention in machine vision and related research communities. There is an increasing demand for smarter video surveillance of public and private space using intelligent vision systems which can distinguish what is semantically meaningful to the human observer as ‘normal’ and ‘abnormal’ be...

متن کامل

Anomaly Detection Based on Local Nearest Neighbor Distance Descriptor in Crowded Scenes

We propose a novel local nearest neighbor distance (LNND) descriptor for anomaly detection in crowded scenes. Comparing with the commonly used low-level feature descriptors in previous works, LNND descriptor has two major advantages. First, LNND descriptor efficiently incorporates spatial and temporal contextual information around the video event that is important for detecting anomalous intera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IET Computer Vision

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016